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It has already been argued that a classical (three-dimensional) Coulomb fluid 
confined between two parallel walls exhibits ideal gas features when the distance 
between the walls becomes small; this is confirmed in the present paper. 
Two-dimensional models of Coulomb fluids (with a logarithmic interaction), 
confined in a strip, are also studied. These models do not become ideal gases 
in the narrow strip limit. The correlation functions are also studied. There is a 
special temperature at which exact results are obtained. At that temperature, the 
two-dimensional, two-component plasma (two-dimensional Coulomb gas), 
which is a conductor when unconfined, becomes a dielectric as soon as it is con- 
fined in a strip of noninflnite width. This can be understood as a displacement 
of the Kosterlitz-Thouless transition by the confinement. 

KEY WORDS:  Coulomb fluids; walls; two-dimensional models; Kosterlitz- 
Thouless phase transition. 

1. I N T R O D U C T I O N  

When a fluid with short-range interactions is confined between two parallel 
plates, it obeys an exact limiting law which says that the number density 
approaches the fugacity as the distance between the plates tends to 
zero. ~1'2) At the same time, the pair correlation function becomes a 
dilute-gas one. (3) The limiting law about the density has been recently 
shown to hold also for ionic fluids. (4) 

The present paper is another contribution to studying the properties of 
(classical) Coulomb fluids confined between two parallel hard walls. We 
consider specific simple models, about which we ask two questions: 
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(a) Do the density and the fugacity approach each other when the 
distance between the walls goes to zero? 

(b) How are the correlations affected by the presence of the walls? 

Since we live in a three-dimensional world, we first revisit the three- 
dimensional fluids; this is done in Section 2. 

In Section 3, we consider two-dimensional models (with a logarithmic 
interaction). They have the advantage that there is a special temperature at 
which they are exactly solvable. For  many purposes, these two-dimensional 
models are believed to mimic rather well (at least qualitatively) the 
three-dimensional Coulomb fluids. However, the models with a logarithmic 
interaction have the "pathological" feature that they do not become ideal 
gases in the low-density limit, and that makes them special in the present 
context. Another specific feature of the two-dimensional case is the existence 
of the Kosterlitz-Thouless phase transition; how this transition is affected 
by the presence of walls is also discussed in Section 3. 

2. T H R E E - D I M E N S I O N A L  C O U L O M B  FLUIDS 

2.1. General Considerat ions 

The equilibrium state of a fluid confined between two parallel hard 
walls can be characterized by its temperature T and its average volume 
density p: if the distance between the walls 2 is 2a, p is defined by the 
requirement that the number of particles between two wall unit areas facing 
each other be 2ap. 

The limiting laws as a becomes small can be understood as follows. In 
the small-a limit the properties of the three-dimensional fluid are expected 
to approach those of a two-dimensional fluid having a surface density 
p~ = 2ap. If a ~ 0 for a fixed value of p, Ps ~ 0 and the fluid approaches a 
two-dimensional dilute gas. If the interactions are such that "dilute" implies 
"weakly coupled," in the small-a limit the excess chemical potential will 
vanish, i.e., the fugacity z of the three-dimensional fluid will approach its 
density p; at the same time, the pair correlation function will approach the 
simple form appropriate to a weakly coupled gas. 

The above reasoning certainly applies to short-range interactions. It 
also applies to a Coulomb fluid. Indeed, for a two-dimensional fluid made 
of particles of charge _+ e, with an interaction potential eZ/r, at a surface 
number density Ps and a temperature T, a dimensionless coupling constant 

2 If the par t ic les  are ha rd  spheres  of d i amete r  a, it is convenient  to call  the dis tance  between 

the walls  2a + a. 
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can be defined as e = 2=pse4/(kB T) 2 (ku is Boltzmann's constant); therefore 
the coupling does vanish with Ps and thus with a. 

It is even possible to say how the small-a limit is approached for a 
Coulomb fluid, because the small-a behavior of the two-dimensional fluid 
is known: it is given by using the Debye-Hiickel theory with a suitable 
modification at short distances. Let us consider two specific models. 

2.2. One-Component Plasma 

The model is a system of identical particles of charge e embedded in 
a uniform background of opposite charge. The interaction potential 
between two particles at a distance r from one another is e2/r. For the 
two-dimensional fluid, the Debye-Hiickel approximation gives (5'6) a pair 
correlation function 

e 2 f0 ze x 
h(r ) -  kBTr dXx---~r/2 So(x) (2.1) 

where 2 = ku T/2r~e2ps; Jo is a Bessel function. At large distances, i.e., for 
r>>2, h(r) has only a power law decay, behaving like -kBT/4=2e2pZr 3 
(this decay is actually valid for arbitrary coupling strength). At small dis- 
tances, (2.1) behaves like -e2/kB Tr; this unacceptable result [-the true pair 
distribution function 1 +h(r) should remain positive] is a well-known 
deficiency of the linearized Debye-Hiickel theory. A more correct behavior 
of h(r) at small distances would be exp( - e2/kB Tr) -- 1. 

Using (2.1) for computing the Coulomb energy per unit area of the 
two-dimensional fluid, 

E 1 2 l 'e2 
ox~=~ps j r h ( r )  d2r (2.2) 

would give a divergent result because of the incorrect small-r behavior of 
(2.1). It is necessary to take into account higher-order corrections to (2.1); 
to lowest order in e (5 is defined in Section 2.1), these corrections amount 
to suppressing in (2.2) the contributions from r<e2/kBT, with the 
result (5, 6) 

E~xo 1 
kn T = -2 pse In ~ + 0(5) 

Correspondingly, the excess chemical potential #~xc is such that 

#exc = e In e + O ( e )  
kBT 
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Therefore, as a ~ 0, the fugacity z of the confined three-dimensional fluid 
tends to its density as 

1"~ exc  z = p  e x p ~ p ( 1  + e l n  e) 

with e = 4rtpae4/(kB T) 2. 

2.3. T w o - C o m p o n e n t  Plasma 

The model is a system of positive and negative particles of opposite 
charges _+ e. In addition to the Coulomb interaction + e2/r, it is necessary 
to assume that there is some short-range repulsion (otherwise the system 
would be unstable against the collapse of pairs of oppositely charged 
particles). Here we shall assume that the particles are small, charged hard 
spheres of diameter a. 

Now (2.1) still holds for the pair correlation function between particles 
of the same sign, with, in the definition of 2, p~ meaning the total surface 
number density; the pair correlation function between particles of opposite 
signs is -h(r). Again, these pair correlation functions hold for the confined 
three-dimensional fluid as 2a ~ 0. 

The calculation of the Coulomb energy and of the excess chemical 
potential is similar to what is done in Section 2.2, except that the small-r 
cutoff is now provided by the hard core, at r = a ,  if we assume that 
a >> e2/kBT. For the confined three-dimensional fluid, we now find the 
limiting law 

1 / ~  1 
exP kB T"~-x + a l n  Ca) 

where p is the total number density, e = 4~pae4/(kBT) 2, and C is some 
constant independent of a. The case a ~ e2/kH T is more involved, and is 
not discussed here. 

3. T W O - D I M E N S I O N A L  C O U L O M B  FLUIDS 

3.1. General  Considerat ions 

We now deal with two-dimensional Coulomb fluids. The interaction 
potential between two particles of charges e and e' at a distance r from one 
another is -ee'ln(r/L), where L is some arbitrary length scale which 
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defines the zero of the potential; let us recall that the choice of a 
logarithmic potential is dictated by the requirement that the usual laws of 
electrostatics (Poisson's equation, etc.) do hold in the two-dimensional 
world. The fluid will now be confined within a strip of width 2a, bounded 
by hard walls, and we are especially interested in studying the small-width 
limit. 

A peculiarity of the logarithmic interaction is that e 2 now has the 
dimensions of an energy, and therefore the dimensionless coupling constant 
is F = e2/kB T, independent of the density. As a consequence, the dilute gas 
is not in general a weakly coupled one, and the reasoning of Section 2.1 
cannot be applied to the present case. However, it remains true that, as the 
strip width 2a tends to zero, the properties of the two-dimensional fluid 
should approach those of a one-dimensional fluid (with a logarithmic 
interaction), about which much is known. Let us see how this works, for 
the two models of the one-component plasma and the two-component 
plasma. 

3.2. One-Component Plasma 

The two-dimensional one-component plasma [again defined as a 
system of identical particles of charge e in a uniform background of 
opposite charge, but now with a logarithmic interaction - e  2 ln(r/L)] has 
been widely studied. For  the unconfined system, the equation of state has 
a simple form, (7) dictated by scaling considerations. In the high-tem- 
perature limit (near F = 0 ) ,  the Debye-Hiickel approximation (7'8) should 
be valid. More interestingly, there is a special temperature such that 
F = e2/kB T =  2, at which the whole thermodynamics and all the correlation 
functions can be computed exactly. ~176 

Exact results can also be obtained for the two-dimensional one- 
component plasma confined in a strip, both in the Debye-Hiickel regime 
( F ~  1) and at F = 2 ,  as follows. 

3.2.1. Debye-H~ckel regime (I-~1). We consider a strip of 
two-dimensional plasma confined between two hard walls parallel to the y 
direction and located at x = +a. The background charge density is - e p .  
What has been done in the case when there is only one hard wall (1~'12) can 
be easily generalized to the present problem. 

Let us first obtain the pair correlation function. To lowest order in F, 
the particle number density p can be considered as having the constant 
value p within the strip. Let O(xl, x2, 3;) be the mean electrical potential at 
the point r~ = (x~, y) when there is a particle at the point r2=  (x2, 0). 
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Combining in the usual way the Poisson equation and the linearized 
Boltzmann equation, one obtains 

~2 c~ 2 ) 
~x12 + - - -  K 2 ay 2 ql(xl ,xa,  y ) =  - e O ( r l - r 2 )  (IXll, lx2l <a)  

~X~"{- ~ ]  I//(Xl, X2, y ) = 0  (IXil >a,  Ix=l <a)  

where ~c 2= 27te2p/kB T =  2rtFp. The boundary conditions are that ~--+ 0 
when Irll ~ 0% and ~ and &O/Ox~ are continuous at x1 = +a. In terms of 
the Fourier transform on y defined by 

O(xl ,x2 ,  Y ) = ~  r  k) e ikydk 
-- 0C3 

(3.1) 

the problem reduces 

-- (~c 2 + k 2) r  x2, k) = - ecS(x 1 - x2) 

to a one-variable differential equation 

(Ixll, Ix2l <a)  

(IXll >a ,  Ixd < a )  

Taking into account the boundary and continuity conditions, one finds 

r  x2, k) = e K {e Kl~-x21 + 2 [ ( K +  Ik[ )2 e2K~ _ (K-- Ikl 

x [ (K 2 - k 2) cosh K(xl + x2) 

+ ( K -  Ik[ )2 e 2Ka cosh K(x I - -  X2) ] } 

12 e 2 K a  3 - - 1  

(3.2) 

where K =  (~2-1" k2) 1/2. Using (3.2) in (3.1) gives a parametric representa- 
tion of ~. The pair correlation function h is related to ~ by the linearized 
Boltzmann equation: 

h(xl ,  x2, y ) =  - ( e / k B T )  ~(x l ,  x2, y) (3.3) 

From the potential qJ, one can compute the thermodynamic properties. 
A particle located at r 2 feels a potential (the self-potential being subtracted) 

~(x2) = [~b(rl, r2) + e ln(Lrl - r2l/L)],~ = ~2 
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and therefore the potential energy per unit length of the strip is 

1 fa Eex c = ~ ep cI)(x) dx 
- - a  

=e2pa In ~ -~ -  7 + -~  

(K 2 _ kZ)(Ka)-1 sinh 2Ka + 2 ( K -  k) 2 e -2Ka] 
x (K+ k) 2 e 2xa -- (K--  k) 2 e--2Ka 3 (3.4) 

where 7 is Euler's constant. The other thermodynamic quantities can be 
obtained from Eexo(p, T). 

More explicit results can be given in the case of interest for us, i.e., 
when the strip width 2a becomes small. The excess energy (3.4) then has 
the behavior 

Eex c = eZpa In 2r~FpaL ~ + o(a) (3.5a) 

Correspondingly, the excess free energy per unit length is 

F~xc=eZpa In 2~FpaL ~ + 1 + o(a) (3.5b) 

and the excess chemical potential is 

ln2~FpaL 7 +o(1)  (3.5c) ~ x ~ = ~  

Thus, as 2a ~ 0, the excess chemical potential does not vanish (it actually 
diverges) and the  fugacity z of the confined two-dimensional plasma 
does not approach its density p. Actually, the confined two-dimensional 
plasma approaches the one-dimensional one-component plasma (with a 
logarithmic interaction), the thermodynamics of which is exactly known, (13) 
and the expressions (3.5) in which one sets 2pa = 2 are indeed the small-F 
results 3 for the one-dimensional plasma with a line density (number of 
particles per unit length)2. 

The small-a behavior of the pair correlation function can also be 
obtained. From (3.1)-(3.3), one finds 

e 2_ f ~  l + 2 a k  
h ( x l = O ' x 2 = O ' Y )  kBTJo d k ~ 2 a + k ( l + 2 a k )  C~ (3.6) 

s In the comparison, one must allow for different choices of the zero of the energy in ref. 13 
and in the present paper. 
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The neglect of ak in (3.6) is not expected to change h in the region y >> a. 
In this region 

h(xl = O, x2 = O, y) kB T o x2 a +-------s cos ky 

This is the result one would have obtained by using the Debye-Hiickel  
approximation directly in the one-dimensional system with a line density 
2 = 2pa. 

3 .2 .2 .  E x a c t  R e s u l t s  a t  r = 2 .  At the special temperature such 
that F = 2 ,  the problem of the two-dimensional one-component  plasma 
confined in a strip was solved some time ago (14) in the canonical formalism. 

When the strip width 2a becomes small, for a fixed value of the 
background charge density -ep, using the formulas in ref. 14, we find that 
the excess energy per unit length has the behavior 

Fexc= e2pa (ln 4 ~  + l ) + o(a ) (3.7a) 

and correspondingly the excess chemical potential is 

e 2 , 1 
#exc = ~ m 4 ~ - s  + o(1 ) (3.7b) 

Here also the excess chemical potential does not vanish as a ~ 0, and the 
two-dimensional plasma does not become an ideal gas. The two-dimen- 
sional plasma approaches the one-dimensional plasma: if we set 2pa--2 in 
(3.7), we do recover the corresponding quantities of the one-dimensional 
plasma (13) with a line density 2. 

3.2.3.  S c r e e n i n g .  The charge-charge correlation function of a 
conducting fluid confined between two parallel walls obeys a sum rule 
which is a consequence of screening: the sum rule is derived (15' 16) under the 
assumption that the fluid perfectly screens an infinitesimal external charge. 
Conversely, the failure to obey this sum rule would mean that the fluid is 
not a conductor, at least in that screening sense. 

The sum rule is expected to hold for a three-dimensional Coulomb 
fluid confined in a slab. 

For  a two-dimensional fluid in a strip bounded by the lines x - -  +a,  
the charge-charge correlation between points r I and r 2 is a function 
S(x~, x2, y), where y is the y component  of r~ - r2. The Fourier transform 
with respect to y is defined by 

S(x~,x2, y ) = l  f~ ~(x,,x2, k)eik, dk 
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With these notations, the two-dimensional version of the sum rule is 

~(k)=faadx, f a dx~(x l ,xz ,  k)~kBTIk I ( k ~ 0 )  (3.8) 
- -  a 7~ 

An equivalent statement about 

s(y) = dx2 S(xt, x2, y) 
- -  - - a  

is: the "monotonic" part of the asymptotic form of s(y) as ]y[ ~ oo is 
--kB T/(n2y2), the Fourier transform of (3.8). However, there may also be 
in the asymptotic form of s(y) oscillating terms (15) generated by possible 
singularities of 2(k) at nonzero values of k. 

In the one-component plasma, S is related to the pair correlation 
function by 

S(X1, X2, Y) = e2[p6(rl --r2) + p2h(xl, x2, Y)] 

In the Debye Hfickel regime ( F ~  1) using (3.1) (3.3), one can check that 
the sum rule (3.8) is indeed satisfied. The sum rule i's also satisfied (~5/ 
at F = 2 .  Thus, at least for these two cases, the two-dimensional one- 
component plasma remains a conductor when confined in a strip. 

3.3 .  T w o - C o m p o n e n t  P l a s m a  

The two-dimensional two-component plasma is a system of positive 
and negative charges _+e. The interaction between two particles of the 
same species (of different species) is - e  2 In r/L( +e 2 in r/L). Again, the 
dimensionless coupling constant is F = e2/kB T, independent of the density. 
The equation of state has the same simple form (7) as for the one- 
component plasma. Again, in the high-temperature limit (near F--0) ,  the 
Debye-Hfickel approximation should be valid. Again, at the special tem- 
perature such that F =  2, the thermodynamics and all the correlation func- 
tions can be computed exactly. (17'18) However, for F~> 2, the point-particle 
system would be unstable against the collapse of pairs of oppositely 
charged particles, and the particles are assumed to be small hard disks of 
diameter a; the results for the thermodynamics at F - - 2  are valid only in 
the small-a limit. 

The two-dimensional bulk two-component plasma has the very inter- 
esting feature of having a phase transition, the celebrated Kosterlitz- 
Thouless transition (19'2~ between a conducting high-temperature phase and 
a dielectric low-temperature phase; in the low-density limit (or, equivalently, 
the small hard-disk limit), the transition takes place at F =  4. 
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Let us now consider the two-dimensional two-component plasma 
confined in a strip. 

3.3.1. Debye-Hi icke l  Regime (I-,~ 1 ). The calculations for the 
two-component plasma are very similar to those done in Section 3.2.1 for 
the one-component plasma, In the definition of ~c z =2~e2p/kBT=2~zFp, 
p must be taken as the total number density (particles of both signs being 
counted). Then the results of Section 3.2.1 are still valid. However, (3.3) is 
the pair correlation function between particles of the same sign; the pair 
correlation function between particles of opposite signs is - h .  

3.3.2. Exact Results  at 1"=2. At the special temperature such 
that F = 2 ,  the problem of the two-dimensional two-component plasma 
confined in a strip can be solved exactly, by a generalization of a previous 
work (21) about the plasma along one wall. 

The grand canonical formalism is used. It is convenient to introduce 
an inverse length m = 2rcLz, where z is the fugacity and L the length scale 
of the logarithmic potential. For the unconfined system (2m) -1 turns out 
to be the correlation length. As shown in ref. 21, the thermodynamics, the 
density profile, and the correlations can be expressed in terms of Green 
functions Gs~s~(rl, r2) (s 1, s2 = _1 ). The one-body density of the particles of 
sign s is 

ps(r) = mGss(r, r) (3.9) 

(for obtaining nondivergent densities, one must introduce a small nonzero 
diameter a for the particles). The two-body truncated densities are 

p~2)rt, r2) = -m2Gs~s2(rl r2) G~s~(r2, rl) sis 2 "~1, (3.1o) 

(the two-body and higher truncated densities are finite even for point 
particles). It is useful to note the symmetry relations 4 

G~(rl,  r2) = G~(r2, rl), G~_s(rl, r2) = - G_~s(r2, rl) 

In the present geometry (a strip along the y axis, bounded by the lines 
x = +_a), the relevant variables are xl ,  x2, and y, and it is convenient to 
introduce the Fourier transform G defined by 

Gs~s2(Xl,x2, y)= ~--x f~o Gs~s2 (x~' x2'k) eiky 

4 The first of these re la t ions  was mispr in ted  in ref. 21. 
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Inside the strip, G+ + is the solution of the differential equation 

- m 2 - k  2 G++(x l ,x2 ,  k ) =  - m b ( x  1 - x 2 )  

while 

+ (xl, Xz, k)=--l ( k - d - ~ l )  G + + (Xl, X2, k) 

The boundary conditions are 

G++(xl=a,  xz, k)=O, 

G+ +(x 1 = - a ,  x2, k )=0 ,  

G_ +(xl = - a ,  x2, k) = 0 

+(xl=a,  x2, k)=O 

Similar equations hold for G and G + .  
One finds the solution 

G+ +(Xl, x2, k) 

m 
~- - -  {e- -Klx l - -X2[  + [ ( K + k )  e2Kaq - (K- -k )  e 2K.] - ,  

2K 

x [(K--  k) e-~(~ + x2) _ (K+  k) e K(~' + ~2) 

- 2 ( K - k )  e 2 K a c o s h K ( x l - x 2 ) ] }  ( k > 0 )  

+ + ( x l ,  x2,  k )  

1099 

(3.11) 

( k > 0 )  

( k < 0 )  

(3.12a) 

l k  
a +(x 1 =0, x 2 =0, k ) = ~  [ I  'k'-~ G+ +(x 1 =0, x 2 = 0  , k) = 0, 

One finds 

d 
--e--KtXl[x=O= 0 
dx 

m = ~{e -X lx~-x2 '+  [ ( K + k )  e 2 K " + ( K - k )  e2I~"]-I 

• [ ( K +  k) e K(x~ + ~2) _ ( K -  k) e-K(x~ + x2) 

- 2 ( K + k )  e -2XacoshK(x l - x2 ) ] }  ( k < 0 )  (3.12b) 

where K = (m2 + k2) 1/2. ~ _  + is given by (3.11 ). 
When the width 2a becomes zero, the G~s2(xl =0,  x2 =0,  k) have 

well-defined limits, provided one uses in (3.11) the "symmetrical" definition 
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the Fourier transforms of which are 

i 
~++(Xl=O, x2=O,y)=O, G_+(xl=O, x 2 = O , y ) = - -  

2~y 

Using these functions in (3.10) together with the symmetry properties of G, 
one finds the two-body truncated densities 

m 2 (zL) 2 
o(Z)T(~" = 0,  X 2 = 0,  y) = 4rc2y 2 - -  "~(2)Tg'~ = 0 ,  X 2 = 0  , y ) = 0 ,  F s  s \ ~ l  y2 (3.13) F" s s  ~,'~'1 

Thus, in the zero-width limit 2a = 0, the correlation functions have 
several remarkable features: 

1. For  a given fugacity z, the truncated two-body densities remain 
finite without the need of any short-distance cutoff in the Coulomb 
interaction. 

2. There is no correlation between two particles of the same sign. 

3. The truncated two-body density for two particles of different signs 
has the simple form m2/4x2y 2. 

Using Gs, = 0 in (3.9) would yield Ps = 0. However, this result Ps = 0 is 
obtained by setting first a =  0 in (~,s(Xl = 0, x2 = 0, k) and computing the 
Fourier transform Gss(X, =0,  x2=0 ,  y = 0 )  afterward, while performing 
first the Fourier transformation would yield p, = oo. In fact, tg, is not a 
well-defined quantity for a point-particle system, and our approach to the 
small-width problem is not well adapted to the hard-disk system. Let us 
only note that here again we do not have p, = z in the small-width limit. 

Finally, it is perhaps interesting to compare the two-dimensional 
system in the infinitely narrow strip limit and the one-dimensional two- 
component plasma (with a logarithmic interaction) for which exact results 
are available, in a lattice version of the model (17'22'231 (the presence of the 
lattice makes the system stable against collapse). Let us use for this 
one-dimensional model a notation adapted to the present paper: ~ is the 
fugacity normalized in such a way that { becomes the usual fugacity in 
the continuum limit (i.e., ~ is an inverse length), L is the length scale in the 
logarithmic interaction + e  2 ln(r/L), and r is the lattice spacing (defined as 
the minimum distance between two particles of the same sign). Thus, the 
results for the one-dimensional lattice model at F =  2 are as follows: 

1. The line densities (numbers of particles of a given sign per unit 
length) are 

1 (Tr~L) 2 
2+ = 2 _  - 

z 1 + (7c~L) 2 
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2. There is no correlation between particles of the same sign on 
different lattice sites. 

3. The truncated two-body line density for two particles of different 
signs on different lattice sites at a distance y from one another is 

(~L) ~ 
2(2)+r(Y) = [1 + (n~L)2] 2 y2 (3.14) 

A kind of continuum limit can be approached by choosing 7zfL ~ 1, a con- 
dition which ensures that the average occupation number )~ + r of a lattice 
site be small. Then 2~)r+(y)~([L)2/y 2, and a comparison with (3.13) 
shows that the correlations of the two-dimensional system in the zero- 
width limit and of the one-dimensional system are consistent with each 
other. 

3.3.3.  S c r e e n i n g .  The sum rule (3.8) provides a test for the 
conducting or dielectric nature of the system; the sum rule is obeyed if and 
only if the system is a conductor. 

In the Debye-Hiickel  regime (F,~ 1), for the two-component  plasma 
in a strip, by essentially the same calculation as for the one-component  
plasma, one can check that the sum rule (3.8) is indeed satisfied. 

However, at F =  2, the story is a different one: the sum rule (3.8) is not 
satisfied. Indeed, from (3.10) and the symmetry properties of G, 

S(xl, xz, y)= -2eZm2[IG++(Xl,X2, y)12+tG_+(x~,x2, y)l 2] ( y r  

(3.i5) 

The Fourier transforms Gs~s2(X~, x2, k) are discontinuous at k = 0 (without 
any other singularity on the k real axis). From (3.12) and (3.11) one finds 

sinh m(x~ + x2) 
d+ +(x~, x2, 0+) - G+ +(xl, x2, 0 - ) =  

cosh 2ma 

(~ + ( X l , X 2 , 0 + ) - G  + ( x l , x 2 , 0 - ) _  c~ 
- - cosh 2ma 

and therefore one finds the asymptotic decays 

sinh m(xl + x2) I 
G + + (xl' x2' Y) lyl~~176 cosh 2 ma 2rtiy 

and 

c o s h m ( x l + x 2 )  1 
G_ + (x l, x2, y) lyl~ ~ - cosh 2ma 2~iy 
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From (3.15) and e 2 = 2kB T, 

S(xl ,  x2, y) lyl~ 

and finally 

;o ;a 
s ( y )  = dXl 

- - a  a 

- kB Tm 2 cosh 2m(xl + x2) 1 
cosh 2 2ma 7c2y 2 

k B T tanh 2 2ma 
dx2 S(xl ,  x2, y) lyl% ~ - ~2y2 

Thus, although s(y) still decays like y 2, the equivalent in coordinate space 
of the sum rule (3.8) fails by a factor tanhZ(2ma); this factor depends on 
the ratio between the strip width 2a and the correlation length (2m) -1 
of the unconfined system. For an unconfined system ( 2 a ~ ) ,  
tanh2(2ma) ~ 1, the sum rule is satisfied, and the system is in its conduct- 
ing phase, in agreement with the fact that, at F =  2, one is above the usual 
Kosterlitz-Thouless transition temperature by a factor 2. However, for a 
system confined in a strip of finite width, the sum rule fails, and therefore 
the system is no longer in its conducting phase. For small widths, one finds 
s ( y )~ -kBT(2ma)Z /g2y  2, recovering the one-dimensional behavior one 
would obtain from (3.13) or from the continuum limit (g~L ~ 1) of (3.14). 

It was already known that the one-dimensional two-component 
plasma (with a logarithmic interaction) is not a conductor (23'24) at F =  2 
(except for the special case of a half-filled lattice). We have just shown that 
the two-dimensional system at F =  2 acquires that specific feature of being 
nonconducting as soon as it is confined in a strip. In that sense, the strip 
behaves like a strictly one-dimensional system. 

4. S U M M A R Y  A N D  CONCLUSION 

In our three-dimensional world, when a Coulomb fluid is confined 
between two parallel walls, the distance of which becomes small, ideal gas 
features do appear: on one hand, the density and the fugacity approach 
each other, and on the other hand the pair correlation function between 
two particles interacting through the Coulomb law +_e2/kB Tr approaches 
the form exp[ ~-e2/kB Tr] -- 1, except at very large distances, where residual 
many-body effects screen the correlation function into an r 3 behavior. 

The two-dimensional models, with a logarithmic interaction, which 
mimic rather well the three-dimensional fluids in other contexts, have 
rather specific properties when confined in a strip between parallel walls. 
When the distance between the walls becomes small, the two-dimensional 
models do not become ideal gases, and their density and fugacity do not 
approach each other. 
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The charge~zharge correlation function of a conducting fluid confined 
between parallel walls obeys a sum rule (which expresses the perfect screen- 
ing of an infinitesimal external charge) in two as well as in three dimen- 
sions. The two-dimensional one-component plasma does satisfy this sum 
rule when the coupling constant F is such that F ~ 1, and also when F = 2. 
The two-dimensional two-component plasma satisfies the sum rule for 
F ~  1, but not at F = 2 .  Therefore, it seems that for the two-dimensional 
two-component plasma confined in a strip, there is a phase transition 
between a high-temperature conducting phase and a low-temperature 
nonconducting phase at some value of F within the range (0, 2].  Analogy 
with the one-dimensional lattice system (23'24) suggests that the confined 
two-dimensional system might be conducting at F <  2 and insulating at 
F~> 2. The transition looks like a modification of the Kosterlitz-Thouless 
transition, which for an unconfined (low-density) two-dimensional two- 
component plasma takes place at F = ~.. The phase diagram of the confined 
plasma certainly requires further investigation. 
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